
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Beagle
Design and Architecture

Annika Berger, Joshua Gleitze, Roman Langrehr,
Christoph Michelbach, Ansgar Spiegler, Michael Vogt

10th of January 2016

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Axel Busch
Second advisor: M.Sc. Michael Langhammer

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Contents

List of Figures ii

Abbreviations iii

1 Architectural Overview 1
1.1 Extension Points . 2

2 Beagle’s Knowledge: The Blackboard 5
2.1 Measurable SEFF Elements . 6
2.2 Evaluable Expressions . 6

3 The Analysis 9
3.1 Measurement . 9
3.2 Analysers . 14
3.3 Final Judge . 17

4 Graphical User Interface 21
4.1 Design . 21
4.2 Control Flow . 21

5 Requirements Specification 25
5.1 Changes to the Software Requirements Speci�cation 25

Terms and Definitions 27

Bibliography 29

i

List of Figures

1.1 Beagle Core Component . 2
1.2 Beagle Core Overview Class Diagram 3
1.3 Beagle Core Package Diagram . 4

2.1 Abstraction Layers on the Blackboard 6
2.2 Blackboard Class Diagram . 7
2.3 Evaluable Expression Class Diagram . 8

3.1 Controller classes . 10
3.2 Pseudocode of Beagle Controller#perform Analysis() 11
3.3 Sequence diagram for Analysis Controller#perform Analysis() 12
3.4 Measurement Class Diagram . 15
3.5 Sequence diagram for Measurement Controller#can measure() 16
3.6 Sequence diagram for Measurement Controller#measure() 16
3.7 Sequence diagram for Measurement Result Analyser#contribute() . . . 17
3.8 Sequence diagram for Proposed Expression Analyser#contribute() . . . 18
3.9 Sequence diagram for Final Judge#judge() 19

4.1 GUI Class Diagram . 22
4.2 PCM Translation Class Diagram . 23

ii

Abbreviations

API Application Programming Interface

CTA Common Trace API

GUI Graphical User Interface

PCM Palladio Component Model

RDIA Resource Demanding Internal Action

SEFF service e�ect speci�cation

SRS Software Requirements Speci�cation

iii

1 Architectural Overview

This chapter gives an introduction to Beagle’s high level design. The following chapters
will describe conceptual details of di�erent subsystems. For the speci�cation of single
types, please refer to Beagle’s Javadoc documentation [Berger et al., 2016].

Beagle consists of a core component and interfaces to external components. Compo-
nents may depend on information provided by another components but their internal
logic works strictly independently from them. Communication takes place exclusively
through the core component. The following are Beagle’s key components and interfaces:

Core Component (Mediator Pattern)

In order to manage and synchronise the requests and execution of di�erent jobs, Beagle
is controlled by a core component. The core component conducts the order of executable
services, distributes information and is responsible for class instantiation. It contains
all management logic required to perform dynamic analysis on software and will
o�er a parameterised Palladio Component Model (PCM) at the end of a successful
execution. It does, however, not contain any logic to actually run measurements or
analyse parametric dependencies. Instead, it depends on other components providing
this functionality.

Measurement Tool

Measurement Tools are responsible for all kinds of measurements which are needed to
determine the execution time of Resource Demanding Internal Actions(RDIAs), branch
decisions of service e�ect speci�cation (SEFF) Branches, and repetitions of SEFF Loops
in regard to a certain parametrisation. An adapter instructing Kieker will be the �rst
class to implement this interface.

Measurement Result Analyser

Based on the measurement results, Measurement Result Analysers will suggest Evalu-
able Expressions which describe the parametric dependencies found in the results.
Typical implementations are regression tools.

1

1 Architectural Overview

«component»
Beagle Core

Expression Analyser Measurement Tool

 Measurement
 Result Analyser

PCM Model

PCM Model

Figure 1.1: The Beagle Core Component and its interfaces.

Proposed Expression Analyser

Proposed Expression Analysers try to improve the results of Measurement Result
Analysers. They usually try to combine proposed expressions to build a better one (in
terms of Beagle’s Fitness Function). As di�erent regression approaches usually have
di�erent advantages and shortcomings, combining their results is likely to produce a
more accurate expression because they together contain a bigger share of all aspects
of reality [Krogmann, 2011]. The genetic approach described by Krogmann would be
implemented as a Proposed Expression Analyser.

Final Judge

This class is responsible to decide which proposed evaluable expression describes
the measured results best and will be annotated in the PCM. It also decides if more
measurements should be done and when the �nal solution is found.

1.1 Extension Points

Measurement Tools, Measurement Expression Analysers and Proposed Expression
Analysers are connected to Beagle via Eclipse Extension Points. This allows a �exible
con�guration of the used plugins after compilation. Development of the plugins can
take place independently (because the Application Programming Interface (API) is
�xed) and which plugins users install can depend on the software available to them.

2

1.1 Extension Points

< < A b s t r a c t > >
Abstract Measurement Result Analyser

 + can contribute (
 blackboard: Read-Only Measurement
 Result Analyser Blackboard View)
 : boolean
 + contribute (
 blackboard: Measurement Result
 Analyser Blackboard View)

< < A b s t r a c t > >
Abstract Proposed Expression Analyser

 + can contribute (
 blackboard: Read-Only Proposed
 Expression Blackboard View)
 : boolean
 + contribute (
 blackboard: Proposed Expression
 Blackboard View)

< < A b s t r a c t > >
Abstract Measurement Tool

+ measure (order: Measurement Order)

Parameter Change Measurement Result

External Call Parameter

 call: Code Section
 index: Integer

«Interface»
Evaluable Expression Fitness Function

 + grade for (rdia: Evaluable Expression, expression: Evaluable Expression,
 blackboard: Evaluable Expession Fitness Function Blackboard View)
 + grade for (branch: SEFF Branch, expression: Evaluable Expression,
 blackboard: Evaluable Expession Fitness Function Blackboard View)
 + grade for (loop: SEFF Loop, expression: Evaluable Expression,
 blackboard: Evaluable Expession Fitness Function Blackboard View)
 + grade for (parameter: External Call Parameter, expression: Evaluable Expression,
 blackboard: Evaluable Expession Fitness Function Blackboard View)

«Interface»
Proposed Expression Analyser

 + can contribute (
 blackboard: Read-Only Proposed
 Expression Blackboard View)
 : boolean

 + contribute (
 blackboard: Proposed Expression
 Blackboard View)

Final Judge

 + judge (
 blackboard: Blackboard)
 : boolean

«Interface»
Measurement Result Analyser

 + can contribute (
 blackboard: Read-Only Measurement
 Result Analyser Blackboard View)
 : boolean

 + contribute (
 blackboard: Measurement Result
 Analyser Blackboard View)

Measurement Controller

 + can contribute (
 blackboard: Blackboard): boolean

 + contribute (blackboard: Blackboard)

«Interface»
Measurement Tool

 + measure (order: Measurement Order)

Analysis Controller

 «Create» + construct (
 blackboard: Blackboard)

 + perform analysis ()

Branch Decision Measurement Result

Loop Repitition Count Measurement Result

Resource Demand Measurement Result

«Interface»
Evaluable Expression

 + receive (visitor: Evaluable Expression Visitor)

 + evaluate(assignment: Evaluable Variable Assignment)

SEFF Loop

 body: Code Section

«Interface»
Measurable SEFF Element

Resource Demanding Internal Action

 action: Code Section
 resource Type: String

SEFF Branch

 branches: Code Section [2..*]

Blackboard

 «Create» + construct (
 rdias: Resource Demanding Internal Actions [*],
 branches: SEFF Branch [*]
 loops: SEFF Loop [*])

< < i m p l e m e n t s > >< < i m p l e m e n t s > >< < i m p l e m e n t s > >

1..*

-measurement tools

*

External Call Parameters*
measurement results

1

*
External Call Parameters to be measured {{unique}}

1

*
External Call Parameters {{unique}}

1

fitness function
1 *

1
- final judge

*

*
- proposed expression analysers

*

1..*
- measurement result analysers

*

1
- measurement controller

*

1
- blackboard

0..1

SEFF Loops*
measurement results

1

SEFF Branches*
measurement results

1

RDIAs*
measurement results

1

Measurable SEFF Element*
proposed expressions

0..1

RDIAs to be measured {{unique}}
*

1

SEFF Loops to be measured {{unique}}
*

1

SEFF Branches to be measured{{unique}}
*

1

Measurable SEFF Element0..1
final expression

0..1

SEFF Branches {{unique}}
*

1

SEFF Loops {{unique}}
*

1

RDIAs { {un ique} }
*

1

Figure 1.2: Class overview of Beagle Core. For details about speci�c classes, refer to
Beagle’s Javadoc [Berger et al., 2016].

3

1 Architectural Overview

Context Menus

 +Context Menu Entry Handler For Components
 +Context Menu Entry Handler For Internal Actions
 +Context Menu Entry Handler For Repositories

GUI

 +Beagle Analysis Wizard
 +GUI Controller
 +Machine Selection Wizard Page
 +Network Configuration Wizard Page
 +Selection Overview Wizard Page
 +Timeout Wizard Page
 +User Configuration
 +Beagle Controller

PCM Connection

 +PCM Repository Blackboard Factory
 +PCM Repository Writer
 +PCM Beagle Mapping

Measurement

 +«Interface» Measurement Tool
 +Branch Decision Measurement Result
 +Loop Repitition Count Measurement Result
 +Measurement Controller
 +Measurement Controller Blackboard View
 +Measurement Order
 +Parameter Change Measurement Result
 +Read-Only Measurement Controller Blackboard View
 +Resource Demand Measurement Result
 +Parametrisation-Dependent Measurement Result
 +Parametrisation

Judge

 +«Interface» Final Judge
 +«Interface» Evaluable Expression Fitness Function
 +«Interface» Evaluable Expression Fitness Function Blackboard View
 +Abstraction And Precision Fitness Function

Beagle Core

 +«Interface» BlackboardStorer
 +«Interface» Measurable SEFF Element
 +Analysis Controller
 +Blackboard
 +External Call Parameter
 +Resource Demanding Internal Action
 +SEFF Loop
 +SEFF Branch

Analysis

 +«Interface» Measurement Result Analyser
 +«Interface» Proposed Expression Analyser
 +Measurement Result Analyser Blackboard View
 +Read-Only Measurement Analyser Blackboard View
 +Proposed Expression Analyser Blackboard View
 +Read-Only Proposed Expression Analyser Blackboard View

Evaluable Expressions

 +«Interface» Evaluable Expression
 +Constant Expression
 +Evaluable Variable
 +Natural Logarithm Expression
 +Exponential Function Expression
 +Comparison Expression
 +Sine Expression
 +Substraction Expression
 +Addition Expression
 +Multiplication Expression
 +If-Then-Else Expression
 +Exponentation Expression
 +Logarithm Expression
 +Division Expression
 +Evaluable Variable Assignment
 +Expression Recursion Exception
 +Undefined Expression Exception

Figure 1.3: Beagle Core’s separation into Packages.

4

2 Beagle’s Knowledge: The Blackboard

The Beagle Core uses the Blackboard as described in [Buschmann et al., 1996, Chapter
2.2]. The blackboard is the central data storage which stores all available SEFF elements,
which SEFF elements should be measured, all measurement results and the �nal expres-
sion for each measurable SEFF element. It also stores individual information for each
Measurement Tool, Measurement Result Analyser, Proposed Expression Analyser, and
the Final Judge (in the this section: “the tools”) because these tools are not allowed to
hold status information. The fact that all status information is stored on the Blackboard
allows the serialisation of an analysis as elements on the blackboard are serialisable.

The blackboard design also allows communication between the tools without de-
pendencies between them: Each tool contributes its knowledge to the blackboard if
it is able to do so and may use information of other tools but doesn’t need to know
about the tool which provided it. This allows addition and removal of tools without
adapting the Beagle Core as well as developing them separately. Additionally, it is easy
to compare di�erent combinations of tools to analyse the software.

As it makes no sense to run a tool performing regression of the measurement results
before any measurements have been made, the di�erent kinds of tools have a di�erent
priority. Therefore the vocabulary of the blackboard is divided into di�erent layers and
the tools can only see some of them. On the bottom layer, there are the code sections
and all tools can access them. On the highest level are the �nal expressions and only
the �nal judge can access them. In between are the Measurement Result Analysers.
They can access the measurement results (and the code sections). On top of them are
the Proposed Expressions Analysers which additionally can access all already proposed
Evaluable Expressions.

The tools contribute content of their highest level or the level above that: Mea-
surement Tools contribute measurement results, Measurement Result Analysers and
Proposed Expressions Analysers contribute “proposed” Evaluable Expressions and the
Final Judge the “�nal” Evaluable Expressions, which will be added to the PCM.

Each kind of tool has a di�erent priority, contrary to their access level: The Measure-
ment Tools have the highest priority. Only when no Measurement Tool can contribute
something, a Measurement Result Analysers is invoked and so on. This ensures, that
the layers a tool depends on, have already been �lled with the best, possible content.
E.g. when a Proposed Expressions Analyser is invoked, all tools that could contribute
content for it and do not depend on the Proposed Expressions Analyser’s kind of results,
the “proposed” evaluable expressions, have already done so.

5

2 Beagle’s Knowledge: The Blackboard

Final Evaluable Expression

Proposed Evaluable Expressions

Measurement Results

Measurable SEFF Element

 Measurement Tools

 Proposed Expression
 Analyser

 Final Jugde

Measurement Result
 Analyser

Figure 2.1: Abstraction Layers on the Blackboard

Typical Measurement Result Analysers are regression tools. Proposed Expressions
Analyser are, fore example, a tool that takes the average of all available Evaluable
Expressions or that builds new ones for an genetic programming approach.

This concept is supported by the Blackboard views: To ensure that each tool – except
the Final Judge – can access only certain layers, they never get access to the blackboard.
They only get a Blackboard View which provides the subset of the Blackboard’s methods
they are allowed to use. Each view can navigate to the blackboard and each method on
the view delegates to the equivalent method on the blackboard. The outcome of this is,
that each tool can only use the blackboard’s method, it is allowed to use.

2.1 Measurable SEFF Elements

The blackboard distinguishes between measurable SEFF elements and SEFF elements in
general. Tools access the set they need through their corresponding views.

2.2 Evaluable Expressions

6

2.2 Evaluable Expressions

Evaluable Expression Fitness Function

«Interface»
Evaluable Expression Fitness Function View

 + get Measurement Results for (
 rdia: Resource Demanding Internal Action)
 : Resource Demand Measurement Result [*]
 + get Measurement Results for (
 branch: SEFF Branch)
 : Branch Decision Measurement Result [*]
 + get Measurement Results for (
 loop: SEFF Loop)
 : Loop Repitition Count Measurement Result [*]
 + get Measurement Results for (
 parameter: External Call Parameter)
 : Call Parameter Measurement Result [*]

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type
 + <Written Type> write for (
 writer: Class<? extends Blackboard Storer<Written Type> >,
 written: Written Type)

Read-Only Proposed Expression Analyser Blackboard View

 + get all RDIAs (): Resource Demanding Internal Action [*]
 + get all SEFF Branches (): SEFF Branch [*]
 + get all SEFF Loops (): SEFF Loop [*]
 + get all External Call Parameters (): External Call Parameter [*]

 + get Measurement Results for (
 rdia: Resource Demanding Internal Action)
 : Resource Demand Measurement Result [*]
 + get Measurement Results for (
 branch: SEFF Branch)
 : Branch Decision Measurement Result [*]
 + get Measurement Results for (
 loop: SEFF Loop)
 : Loop Repitition Count Measurement Result [*]
 + get Measurement Results for (
 parameter: External Call Parameter)
 : Call Parameter Measurement Result [*]

 + get proposed expressions for (
 element: Measureable SEFF Element)
 : Evaluable Expressions [*]

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type

Proposed Expression Analyser Blackboard View

 + get all RDIAs (): Resource Demanding Internal Action [*]
 + get all SEFF Branches (): SEFF Branch [*]
 + get all SEFF Loops (): SEFF Loop [*]
 + get all External Call Parameters (): External Call Parameter [*]

 + add to be measured (rdias: Resource Demanding Internal Action [*])
 + add to be measured (branches: SEFF Branch [*])
 + add to be measured (loops: SEFF Loop [*])
 + add to be measured (parameters: External Call Parameter [*])

 + get Measurement Results for (
 rdia: Resource Demanding Internal Action)
 : Resource Demand Measurement Result [*]
 + get Measurement Results for (
 branch: SEFF Branch)
 : Branch Decision Measurement Result [*]
 + get Measurement Results for (
 loop: SEFF Loop)
 : Loop Repitition Count Measurement Result [*]
 + get Measurement Results for (
 parameter: External Call Parameter)
 : Call Parameter Measurement Result [*]

 + get proposed expressions for (
 element: Measureable SEFF Element)
 : Evaluable Expressions [*]
 + add proposed expressions for (
 element: Measurable SEFF Element,
 expressions: Evaluable Expression [*])

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type
 + <Written Type> write for (
 writer: Class<? extends Blackboard Storer<Written Type> >,
 written: Written Type)

Final Judge

Measurement Controller

Proposed Expression Analyser

Measurement Result Analyser

Written Type

«Interface»
Blackboard Storer

Read-Only Measurement Controller Blackboard View

 + get RDIAs to be measured (): Resource Demanding Internal Action [*]
 + get SEFF Branches to be measured (): SEFF Branch [*]
 + get SEFF Loops to be measured (): SEFF Loop [*]
 + get External Call Parameters to be measured (): External Call Parameter [*]

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type

Measurement Controller Blackboard View

 + get RDIAs to be measured (): Resource Demanding Internal Action [*]
 + get SEFF Branches to be measured (): SEFF Branch [*]
 + get SEFF Loops to be measured (): SEFF Loop [*]
 + get External Call Parameters to be measured (): External Call Parameter [*]

 + add Measurement Results for (
 rdia: Resource Demanding Internal Action,
 results: Resource Demand Measurement Result [*])
 + add Measurement Results for (
 branch: SEFF Branch,
 results: Branch Decision Measurement Result [*])
 + add Measurement Results for (
 loop: SEFF Loop,
 results: Loop Repetition Measurement Result [*])
 + add Measurement Results for (
 call: External Call,
 results: Call Parameterisation Measurement Result[*])

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type
 + <Written Type> write for (
 writer: Class<? extends Blackboard Storer<Written Type> >,
 written: Written Type)

Read-Only Measurement Result Analyser Blackboard View

 + get all RDIAs (): Resource Demanding Internal Action [*]
 + get all SEFF Branches (): SEFF Branch [*]
 + get all SEFF Loops (): SEFF Loop [*]
 + get all External Call Parametrs (): External Call Parameter [*]

 + get Measurement Results for (
 rdia: Resource Demanding Internal Action)
 : Resource Demand Measurement Result [*]
 + get Measurement Results for (
 branch: SEFF Branch)
 : Branch Decision Measurement Result [*]
 + get Measurement Results for (
 loop: SEFF Loop)
 : Loop Repitition Count Measurement Result [*]
 + get Measurement Results for (
 parameter: External Call Parameter)
 : Call Parameter Measurement Result [*]

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type

Measurement Result Analyser Blackboard View

 + get all RDIAs (): Resource Demanding Internal Action [*]
 + get all SEFF Branches (): SEFF Branch [*]
 + get all SEFF Loops (): SEFF Loop [*]
 + get all External Call Parameters (): External Call Parameter [*]

 + add to be measured (rdias: Resource Demanding Internal Action [*])
 + add to be measured (branches: SEFF Branch [*])
 + add to be measured (loops: SEFF Loop [*])
 + add to be measured (calls: External Call [*])

 + get Measurement Results for (
 rdia: Resource Demanding Internal Action)
 : Resource Demand Measurement Result [*]
 + get Measurement Results for (
 branch: SEFF Branch)
 : Branch Decision Measurement Result [*]
 + get Measurement Results for (
 loop: SEFF Loop)
 : Loop Repitition Count Measurement Result [*]
 + get Measurement Results for (
 parameter: External Call Parameter)
 : Call Parameter Measurement Result [*]

 + add proposed expressions for (
 element: Measurable SEFF Element,
 expressions: Evaluable Expression [*])

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type
 + <Written Type> write for (
 writer: Class<? extends Blackboard Storer<Written Type> >,
 written: Written Type)

Blackboard

 + get all RDIAs (): Resource Demanding Internal Action [*]
 + get all SEFF Branches (): SEFF Branch [*]
 + get all SEFF Loops (): SEFF Loop [*]
 + get all External Call Parameters (): External Call Parameter [*]

 + get RDIAs to be measured (): Resource Demanding Internal Action [*]
 + get SEFF Branches to be measured (): SEFF Branch [*]
 + get SEFF Loops to be measured (): SEFF Loop [*]
 + get External Call Parameters to be measured (): External Call Parameter [*]
 + add to be measured (rdias: Resource Demanding Internal Action [*])
 + add to be measured (branches: SEFF Branch [*])
 + add to be measured (loops: SEFF Loop [*])
 + add to be measured (parameters: External Call Parameter [*])

 + get Measurement Results for (
 rdia: Resource Demanding Internal Action)
 : Resource Demand Measurement Result [*]
 + get Measurement Results for (
 branch: SEFF Branch)
 : Branch Decision Measurement Result [*]
 + get Measurement Results for (
 loop: SEFF Loop)
 : Loop Repitition Count Measurement Result [*]
 + get Measurement Results for (
 parameter: External Call Parameter)
 : Call Parameter Measurement Result [*]
 + add Measurement Results for (
 rdia: Resource Demanding Internal Action,
 results: Resource Demand Measurement Result [*])
 + add Measurement Results for (
 branch: SEFF Branch,
 results: Branch Decision Measurement Result [*])
 + add Measurement Results for (
 loop: SEFF Loop,
 results: Loop Repetition Measurement Result [*])
 + add Measurement Results for (
 call: External Call,
 results: Call Parameter Measurement Result[*])

 + get proposed expressions for (
 element: Measureable SEFF Element)
 : Evaluable Expressions [*]
 + add proposed expressions for (
 element: Measurable SEFF Element,
 expressions: Evaluable Expression [*])

 + get final expression for (
 element: Measurable SEFF Element)
 : Evaluable Expression
 + set final expression for (
 element: Mesaurable SEFF Element,
 expression: Evaluable Expression)

 + get fitness function (): Evaulable Expression Fitness Function

 + <Written Type> read for (
 writer: Class<? extends Blackboard Storer<Written Type> >)
 : Written Type
 + <Written Type> write for (
 writer: Class<? extends Blackboard Storer<Written Type> >,
 written: Written Type)

 optionally
 «implements»

«implements»

«implements»

1
- blackboard

*

1
- blackboard

*

1
- blackboard

*

1
- blackboard

*

1
- blackboard

*

1
- blackboard

*

Figure 2.2: The Blackboard and its views. The accessor methods are explicitly stated to
visualise the view’s usage.

7

2 Beagle’s Knowledge: The Blackboard

Evaluable Variable Assignment

	+ getValueFor (variable: Evaluable Variable)
	+ setValueFor (variable: Evaluable Variable,
	 value: real)
	+ isValueAssignedFor (variable: Evaluable Variable)

<< In te r face>>
Evaluable Expression Visitor

 + visit (variable: Evaluable Variable)
 + visit (constant: Constant Expression)
 + visit (expression: If-Then-Else Expression)
 + visit (expression: Multiplication Expression)
 + visit (expression: Addition Expression)
 + visit (expression: Exponentation Expression)
 + visit (expression: Exponential Function Expression)
 + visit (expression: Logarithm Expression)
 + visit (expression: Comparison Expression)
 + visit (expression: Sine Expression)
 + visit (expression: Division Expression)
 + visit (expression: Subtraction Expression)
 + visit (expression: Natural Logarithm Expression)

Realise as flyweight

Evaluable Expressions implement the Visitor Pattern.
Components may subclass Evaluable Expression Visitor.
As a consequence, Evaluable Expressions are not
intended to be subclassed, as ResultAnalysers and the
Final Judge will and may rely on the exact set of
available Evaluable Expressions.

Natural Logarithm Expression

Evaluable Variable

- name: String[1]

Exponential Function Expression

Exponentation Expression

Logarithm Expression

Sine Expression

Division Expression

Subtraction ExpressionMultiplication Expression

Addition Expression

Constant Expression

- name: String[1]

Comparison Expression

If-Then-Else Expression
«Interface»

Evaluable Expression

 + receive (visitor: Evaluable Expression Visitor)
 + evaluate(assignment: Evaluable Variable Assignment): real

1
- Base

*

1
- Exponent

*

1
- Exponent

*

1
- Base

*

1
- Antilogarithm

*

1
- Argument

*

1
- Divisor

*

1
- Dividend

*

1
- Minuend
*

1
- Subtrahend
*

1
- Antilogarithm
*

2 . .+
- Factors
*

2..*
- Summands

*

1
- Greater

*

1
- Smaller

*

1
- Else

*

1
- Then

*

1
- Condition

*

Figure 2.3: The Evaluable Expression Interface and its implementations realise the
Visitor pattern.

8

3 The Analysis

At Beagle’s core, the Analysis Controller controls all analysis activity by instructing the
Measurement Controller, the Measurement Result Analysers, the Proposed Expression
Analysers and the Final Judge. While not contributing itself, it is charge of all control
�ow during analysis.

Analysis Controller#perform Analysis performs a complete analysis, starting by
measuring the examined software, and continuing to analyse until the Final Judge
reports that the analysis is �nished. There is always at most one Measurement Tool,
Measurement Result Analyser, Proposed Expression Analyser or Final Judge having the
control �ow at any given moment during the execution of Analysis Controller#perform
Analysis (“the analysis loop”).

An iteration of the analysis loop starts by asking the Measurement Controller whether
it wants to conduct measurements for the current blackboard state—which will usually
be the case if there is something not yet measured—, and if so, calling its #measure
method. The Measurement Controller will then instruct the Measurement Tools to
measure. Usually, it will tell every tool to measure all new SEFF Elements.

After that, the main loop invokes one arbitrary chosen Measurement Result Analyser
reporting to be able to contribute to the current blackboard state. This analyser may
then propose expressions describing the parametric dependencies of SEFF Elements’
measurement results. If there is no such analyser, an arbitrary chosen Proposed Expres-
sion Analyser reporting to be able to contribute will be invoked. It may then propose
more expressions based on the ones the ones Measurement Result Analysers added to
the blackboard, usually trying to improve them. If there Final Judge will be called. It
decides whether enough information has been collected and Beagle can terminate. If
this is the case, it also creates or selects the �nal result for each item that has proposed
results.

The analysis loop will then be repeated until the Final Judge was called and its #judge
method returned true. Figure 3.2 sketches the procedure.

3.1 Measurement

Measurement Tools are responsible for actually running the software examined by
Beagle. They’ll usually instrument the source code, execute it and collect the results from
the instrumentation points. Because this competence is fundamentally di�erent from

9

3 The Analysis

Final Judge

 + judge (
 blackboard: Blackboard)
 : boolean

«Interface»
Measurement Result Analyser

 + can contribute (
 blackboard: Read-Only Measurement
 Result Analyser Blackboard View)
 : boolean

 + contribute (
 blackboard: Measurement Result
 Analyser Blackboard View)

«Interface»
Proposed Expression Analyser

 + can contribute (
 blackboard: Read-Only Proposed
 Expression Blackboard View)
 : boolean

 + contribute (
 blackboard: Proposed Expression
 Blackboard View)

«Interface»
Measurement Tool

 + measure (order: Measurement Order)

Measurement Controller

 + can contribute (blackboard: Read-Only
 Measurement Controller Blackboard View)
 : boolean

 + contribute (blackboard:
 Measurement Controller Blackboard View)

Analysis Controller

 «Create» + construct (
 blackboard: Blackboard)

 + perform analysis ()

1
- final judge

*

1..*
- measurement result analysers

*

1
- measurement controller

*
*

- proposed expression analysers
*

1..*
- measurement tools

*

Figure 3.1: UML class diagram of the controller classes.

10

3.1 Measurement

�nished B false

romraBlackboardView B Read-Only Measurement Result Analyser Blackboard
View.construct(blackboard)
mraBlackboardView B MeasurementController Blackboard View.construct(blackboard)
ropeBlackboardView B Read-Only Proposed Expression Analyser Blackboard
View.construct(blackboard)
peBlackboardView B Proposed Expressions Blackboard View.construct(blackboard)

while ¬�nished do
if measurement controller.can measure(blackboard) then

measurement controller.measure(blackboard)
else if ∃ analyser ∈measuremet result analysers :
analyser .can contribute (romraBlackboardView) then

analyser.contribute(mraBlackboardView)
else if ∃ analyser ∈ proposed expression analysers :
analyser .can contribute (ropeBlackboardView) then

analyser.contribute(peBlackboardView)
else

�nished B �nal judge.judge(blackboard)
end

end

Figure 3.2: Beagle Controller#perform Analysis() in pseudocode.

11

3 The Analysis

ref
Proposed Expression

judge()
ref

can
ref

Measurement Result
ref

measure()
ref

ref
can

Proposed Expression

Proposed Expression

Measurement Result

can
ref

measure()

can

:Final Judge

ref

:Proposed Expression Analyser

ref

:Proposed Expression Analyser

ref

:Measurement Result Analyser

:Measurement Result Analyser

ref

ref

sd perform Analysis
:Measurement Controller

:Analysis Controller

t rue

judge(blackboard: Blackboard)

contribute(blackboard: Proposed Expression Analyser Blackboard View)

t rue

can contribute result4 = can contribute(blackboard: Read-Only Blackboard View)

false

can contribute(blackboard: Read-Only Blackboard View)

false

can contribute(blackboard: Read-Only Blackboard View)

false

can measure(blackboard: Read-Only Blackbaord View)

contribute(blackboard: Measurement Result Analyser Blackboard View)

t rue

can contribute(blackboard: Read-Only Blackboard View)

measure(blackboard: Measurement Controller Blackboard View)

t rue

can measure(blackboard: Read-Only Blackbaord View)

can contribute(blackboard: Read-Only Blackboard View)

false

can measure(blackboard: Read-Only Blackbaord View)

false

judge(blackboard: Blackboard)

contribute(blackboard: Proposed Expression Analyser Blackboard View)

t rue

can contribute(blackboard: Read-Only Blackboard View)

contribute(blackboard: Proposed Expression Analyser Blackboard View)

t rue

false

can contribute(blackboard: Read-Only Blackboard View)

contribute(blackboard: Measurement Result Analyser Blackboard View)

t rue

can contribute(blackboard: Read-Only Blackboard View)

measure(blackboard: Measurement Controller Blackboard View)

t rue

can measure(blackboard: Read-Only Blackbaord View)

perform analysis()

Figure 3.3: An exemplary run of Analysis Controller#perform Analysis() with a con-
crete setup of Analysers. Various method calls will be shown in following
diagrams.

12

3.1 Measurement

analysing SEFF Elements, it has a di�erent vocabulary and di�erent business objects.
The Measurement Controller translates between Measurement Tools and Beagle Core.
For instance, measuring code does not involve any control �ow abstraction like the
SEFF, but operates directly on source code. On the other hand, the Analysers require
already interpreted results to propose expressions for them.

When the Blackboard is created by PCM Repository Blackboard Factory, all Mea-
surable SEFF Elements get a Code Section pointing to where they are de�ned in the
source code, as read in from the PCM �les. Based on this information, the Measure-
ment Controller creates a Measurement Order. This order describes the source code
sections Beagle needs information about in the language of the Measurement Tools.
The description is analogous to the Instrumentation Points described in [Krogmann,
2011], 5.10.2:

• Before and after each external call, parameter value sections will be put on the
Measurement Order to capture the transferred and returned parameter’s state.

• An execution section will be added to the Measurement Order for each branch in
a SEFF condition (represented by one SEFF Branch) to determine which branch
was executed.

• An execution section will be created for the body of every SEFF loop, to count
how often it will be executed.

• For each Resource Demanding Internal Action, a resource demand section will
be created to measure the resource demands of that action and type.

The order also contains Launch Con�gurations that can be used to run the examined
software’s code. These launch con�gurations are provided by the user. They are
not Eclipse’s launch con�gurations, although an adapter to them would make a good
implementation of Launch Con�guration.

When receiving the order, Measurement Tools can instrument the source code based
on this information. Executing the instrumented code (through the Launch Con�gura-
tions) hence gives them information about the executed code sections. They give this
information back in the form of a list of Measurement Events ordered by the time they
occurred. The Measurement Controller has no expectations about what a Measurement
Tool can measure, tools are allowed to support only a subset of the instrumentation
instructions on the Measurement Order. A measurement can also lead to no Measure-
ment Events at all, for example because of a Launch Con�guration only running code
the user is not interested in.

The Measurement Controller then uses a Measurement Event Parser to create Para-
meterisation-Dependent Measurement Results that Measurement Result Analysers can
operate on out of the captured Measurement Events:

13

3 The Analysis

• The last consecutive occurrences of Parameter Value Captured Events from the
same code section sets the parameterisation for all following results. If the
events occur after an External Call, they are used to create a Parameter Change
Measurement Result.

• The sum of consecutive executions of a SEFF Loop’s body is used to create a Loop
Repetition Count Measurement Result.

• Which code section was executed determines the branch index for the created
Branch Decision Measurement Result.

• A Resource Demand Captured Event can directly be translated to a Resource
Demand Measurement Result.

The Measurable SEFF Elements the created Parameterisation-Dependent Measurement
Results will be assigned to are determined by the code sections the Measurement Events
occurred for.

The measurement order also provides a Parameter Characteriser, Measurement Tools
shall use to characterise parameters in parameter value sections. This functionality,
including the Parameterisation and Parameter Characterisation classes, is intentionally
only sketched in the current design. Implementing them is out of this project’s scope and
will only be targeted if time is left after implementing Beagle’s mandatory requirements.
However, they are included in the class diagram to show that the functionality will
seamlessly integrate into the design.

The �rst implementation of a Measurement Tool will be an adapter to the Kieker
performance monitoring framework.

3.2 Analysers

Measurement Result Analysers and Proposed Expression Analysers (“Analysers”) are
not limited in their functionality. There exist many di�erent approaches to analyse
parametric dependencies, all having their advantages and disadvantages. Especially if
Krogmann’s genetic programming approach is implemented (as a Proposed Expression
Analyser), more, di�erent Analysers may drastically improve the �nal result and the
computation time needed to �nd it [Krogmann, 2011]. The Final Judge will always pick
the best result (in regard of the Fitness Function) and no proposed expression is ever
deleted, so the result can only get better by adding more analysers.

Analysers have to carefully implement their #can contribute() methods. There inten-
tionally exist very little restrictions to when and how often an Analyser may run to not
restrict the variety of approaches that can be implemented. However, Analysers have
to make sure that the analysis can terminate. This is especially crucial with multiple

14

3.2 Analysers

«Interface»
Launch Configuration

 + execute ()

Parameter Characteriser

 + characterise (parameter: Object)
 : Parameter Characterisation [1..*]

Parameter Characterisation

«interface»
Measurement Event Visitor

 + visit (event: Section Executed)
 + visit (event: Resource Demand Captured)
 + visit (event: Parameter Value Captured)

Measurement Event Parser

 + visit (event: Section Executed)
 + visit (event: Resource Demand Captured)
 + visit (event: Parameter Value Captured)

Resource Demand Captured

 type: String
 value: Real

Parameter Value Captured

 index: Integer
 value: Parameter Characterisation [1..*]

Section Executed

«Interface»
Measurement Event

 + receive (visitor: Measurement Event Visitor)

Parameter Change Measurement Result

 - new value: Parameter Characterisation [1..*]

External Call Parameter

 index: Integer

Resource Demanding Internal Action

SEFF Loop

SEFF Branch

Measurement Controller

 + can contribute (
 blackboard: Blackboard): boolean

 + contribute (blackboard: Blackboard)

 Code Section

 start: Integer
 start file: File
 end: Integer
 end file : File

Measurement Order

Loop Repetition Count Measurement Result

 - count: Integer

Resource Demand Measurement Result

 - value: Real

Branch Decision Measurement Result

 - branch index: Integer

Parameterisation

«Interface»
Parameterisation-Dependent Measurement Result

«Interface»
Measurement Tool

 +measure (order: Measurement Order)
 : Measurement Event [*] {{ordered}}

1..*
launch configurations

*

1
 characteriser

*

Identifier
1..*0..1

 «use»

1
measured section

*

 call
 1

0..1

section
1

0..1

branches
2..*0..1

body
1

0..1

*
execution sections

*

*
parameter value sections

*

*
resource demand sections

*

1
parameterisation

*

Figure 3.4: Classes involved in Measurement. Classes on the left hand side belong to
Beagle Core’s View, classes on the left hand to Measurement Tools’ view.
Classes in the centre are used by both sides or translate between the views.

15

3 The Analysis

:Blackboardblackboard: Read-Only Measurement Controller Blackbaord View:Measurement Controller
sd can measure()

get External Call Parameter to be measured()
get External Call Parameter to be measured()

get SEFF Loops to be measured()
get SEFF Loops to be measured()

get SEFF Branches to be measured()
get SEFF Branches to be measured()

get RDIAS to be measured()
get RDIAS to be measured()

can measure(blackboard: Read-Only Measurement Controller Blackbaord View)

Figure 3.5: An exemplary run of Measurement Controller#can measure(), checking
whether there are new SEFF Elements to be measured.

:Measurement Tool

:Measurement Tool

order: Measurement Order

:Blackboardblackboard: Measurement Controller Blackbaord View:Measurement Controller
sd measure()

get External Call Parameter to be measured()
get External Call Parameter to be measured()

get Code Sections()

get Code Sections()

measure(order: Measurement Order)

measure(order: Measurement Order)

get SEFF Loops to be measured()
get SEFF Loops to be measured()

get SEFF Branches to be measured()
get SEFF Branches to be measured()

get RDIAS to be measured()
get RDIAS to be measured()

measure(blackboard: Measurement Controller Blackbaord View)

Figure 3.6: An exemplary run of Measurement Controller#measure, preparing the Mea-
surement Order and commissioning it to the registered Measurement Tools.

16

3.3 Final Judge

rdia1: Resource Demanding Internal Action

expression 1: Constant Expression

result1: Resource Demand Measurement Result

:Blackboard

blackboard: Measurement Result Analyser Blackbaord View

:Measurement Result Analyser

sd Measurement Result Analyser#contribute()

add proposed expression for(rdia1, expression1)
add proposed expression for(rdia1, expression1)

0.7071

get Value("CPU")

{ resu l t 1 }

get Measurement Results for(rdia1)

{ resu l t 1 }

get Measurement Results for(rdia1)

{ r d i a 1 }

get all RDIAs()

{ r d i a 1 }

get all RDIAs()
contribute(blackboard: Measurement Result Analyser Blackbaord View)

Figure 3.7: An exemplary run of Measurement Result Analyser#contribute() for a Mea-
surement Result Analyser contributing the measurement results’s values as
Constant Expressions.

analysers, all constantly generating new results. It can be achieved by regularly not
contributing, and hence letting the Final Judge decide from time to time. The Final
Judge will not terminate the analysis if there is reasonable hope for a better result, so
analysers are likely to be called again after returning false in their #can contribute
method.

The �rst implementation will include a Measurement Result Analyser proposing all
measurement results as a Constant Expression and a Proposed Expression Analyser
proposing the average of all proposed Constant Expressions. These will still be useful
when implementing more complex analysers like the genetic analyser.

3.3 Final Judge

The Final Judge is in charge of deciding when to end the analysis. As explained above,
this is not trivial, as stopping it to soon will likely generate bad results. Therefore, it
will apply a combination of heuristics, including how much the best and average result
improved in the last analysis iterations, how long the analysis is running, how many
optimal results have been found, etcetera. Prompting users is an option, too. There are
only two cases in which the analysis will be ended immediately:

• All Measurable SEFF Elements have an optimal proposed Evaluable Expression
on the Blackboard, or

17

3 The Analysis

expression 2: Evaluable Expression

expression 3: Constant Expression

expression 1: Evaluable Expression

rdia1: Resource Demanding Internal Action

:Blackboard

blackboard: Proposed Expression Analyser Blackbaord View

:Measurement Result Analyser

sd Proposed Expression Analyser#contribute()

add proposed expression for(rdia1, expression 3)
add proposed expression for(rdia1, expression 3)

{expression 1, expression 2}

get proposed expressions for(rdia1)

{expression 1, expression 2}

get proposed expressions for(rdia1)

{ r d i a 1 }

get all RDIAs()

{ r d i a 1 }

get all RDIAs()
contribute(blackboard: Proposed Expression Analyser Blackbaord View)

Figure 3.8: An exemplary run of Proposed Expression Analyser#contribute() for a Pro-
posed Expression Analyser contributing the average of all Constant Expres-
sions proposed for a SEFF Element.

• The Measurement Controller, all Measurement Result Analysers and all Proposed
Expression Analysers returned false in their #can measure or #can contribute
method in the last iteration of the analysis loop.

The Final Judge grades Evaluable Expressions based on a �tness function. Because
analysers may use a �tness function to generate better results, the it is available to them
from the Blackboard. The Final Judge will always pick the proposed expression graded
best for the �nal expression. If there are multiple such expressions, is it unde�ned
which one will be chosen.

18

3.3 Final Judge

assignment2: Evaluable Variable Assignment

subexpression 1: Constant Expression

subexpression 1: Constant Expression

assignment1: Evaluable Variable Assignment

result1: Resource Demand Measurement ResultfitnessFunction: Final Expression Fitness Function

expression 2: Sine Expression

expression 1: Exponentiation Function Expression

rdia1: Resource Demanding Internal Action blackboard: Blackbaord

:Final Judge

sd judge()

0.6010

evaluate(assignment2)

0.5655

evaluate(assignment2)

2.2457
0.8090

evaluate(assignment1)
evaluate(assignment1)

0.7071 sec

get Value("CPU")

grade for(rdia1, expression2)

1.3591

{ resu l t 1 }

get Measurement Results for(rdia1)

1.5707

{ resu l t 1 }

get Measurement Results for(rdia1)

0.7071 sec

get Value("CPU")

grade for(rdia1, expression1)

fitnessFunction

get fiteness function()

set final expression for(rdia1, expression2)

{expression 1, expression 2}

get proposed expressions for(rdia1)

{ r d i a 1 }

get all RDIAs()

t rue

judge(blackboard: Blackbaord)

Figure 3.9: Exemplary run of Final Judge#judge(). Two expressions have been proposed
for a Resource Demanding Internal Action having one Measurement Result
of its CPU usage.

19

4 Graphical User Interface

4.1 Design

The GUI follows the Model-View-Controller paradigm. It accordingly clearly separates
responsibilities: Displaying GUI parts, controlling these parts, setting up the model
(Beagle Core), and the model itself. This leads to a clear �ow of information and control.
Information is stored either locally or in a single object every GUI class knows (the
User Con�guration) because only the user’s settings need to be transported through
all objects. The user always has control over the analysis because information can be
transported from the dialog, though the GUI Controller object, to the Beagle Controller
which can instruct the model.

4.2 Control Flow

GUI Controller is the heart of Beagle’s GUI. It is responsible to start the GUI. The class
controls the �ow of actions on the GUI and gives control to Beagle Controller once the
user started the analysis. Beagle Controller is commanded by GUI Controller to start,
pause, continue, and abort the analysis.

There are three context menu entries added by Beagle with eclipse extension points:
One for analysing a complete repository in the package explorer and the project explorer
on the .repository and .repository_diagram �les. Another one for analysing a single
components in the repository diagram on the Basic Component Edit Parts. The last one
is for analysing a single internal actions in the SEFF diagram for the Internal Action
Edit Parts. Each of them has its own Command Handler class, which is handles clicks
on the context menu entries.

The GUI Controller is created and called from actions originating from context menu
clicks. The GUI stores all data obtained from the user in the User Con�guration. Thus,
the GUI Controller creates a User Con�guration which it from now on will be associated
with. It then creates a new Beagle Analysis Wizard which in return will create its Wizard
Pages. All objects obtain the User Con�guration to be able to directly provide their
gathered information to it. Calling GUI Controller’s open() method will display the
GUI and show the Analysis Wizard, prompting the use for all information necessary to
perform an analysis.

21

4 Graphical User Interface

The Eclipse
Message Dialog
class.

Context Menu Entry Handler For Internal Actions

+ execute(event: Execution Event): Object

Context Menu Entry Handler For Repositories

+ execute(event: Execution Event): Object

The Eclipse Execution
Event class.

Context Menu Entry Handler For Components

+ execute(event: Execution Event): Object

Package::org.eclipse.core.commands
«abstract»

Abstract Handler

The Eclipse Abstract
Handler class.

The Eclipse Wizard
Page class.

PCM Repository Blackboard Factory

PCM Repository WriterAnalysis Controller

Beagle Controller

+ Beagle Controller(user configuration : User Configuration)
+ start Analysis()
+ pause Analysis()
+ continue Analysis()
+ abort Analysis()

The GuiController calls `pause()`,
`continue()`, and `abort()` upon receiving
information about which button has been
clicked from its Dialog object.

Is called by the
context-menu
entries.

Stores everything
the user
configured (for
example the
timeout).User Configuration

- t imeout

Message Dialog

GUI Controller

+ «create» GuiController
 (components : String[*])
+ open()

Timeout Wizard Page

+ «create» Timeout Wizard Page
 (: User Configuration)

Network Configuration Wizard Page

+ «create» Network Configuration Wizard Page
 (: User Configuration)

Machine Selection Wizard Page

+ «create» Machine Selection Wizard Page
 (: User Configuration)

Selection Overview Wizard Page

+ «create» Selection Overview Wizard Page
 (: User Configuration)

Package::org.eclipse.jface.wizard
«abstract»

Wizard Page

Beagle Analysis Wizard

«uses»

1

 *

1

 *

1 *

1

1

«uses»

«uses»«uses»

1

1

1

1

1

1

1

1

1

1

1

1

11

1
1

Figure 4.1: UML class diagram of the GUI classes.

22

4.2 Control Flow

Written Type

«Interface»
Blackboard Storer

PCM Repository Blackboard Factory

 <<Create>> + construct (
 repository: PCM repository files)
 + get blackboard for all elements() : Blackboard
 + get blackboard for IDs(IDs: String) : Blackboard

PCM Repository Writer

 <<Create>> + construct (
 blackboard: Blackboard)
 + write to(repository: PCM repository files)

PCM Beagle Mapping

 + get PCM ID of (rdia: Resource Demanding Internal Action): String
 + get PCM ID of (branch: SEFF Branch): String
 + get PCM ID of (loop: SEFF Loop): String
 + get PCM ID of (ecp: Excernal Call Parameter): String

 + has PCM ID of (rdia: Resource Demanding Internal Action): boolean
 + has PCM ID of (branch: SEFF Branch): boolean
 + has PCM ID of (loop: SEFF Loop): boolean
 + has PCM ID of (ecp: Excernal Call Parameter): boolean

 + add PCM ID of (rdia: Resource Demanding Internal Action, identifier: String)
 + add PCM ID of (branch: SEFF Branch, identifier: String)
 + add PCM ID of (loop: SEFF Loop, identifier: String)
 + add PCM ID of (ecp: External Call Parameter, identifier: String)

«implements»wri te
read

Figure 4.2: Classes used to read from and write to PCM repository �les.

After the wizard has �nished, control is returned to the GUI Controller which will
now (concurrently) instruct the Beagle Controller to set up the Beagle Core Component.
To do so, Beagle Controller sets up a Blackboard based on the information collected
in the User Con�guration. For example, it uses a PCM Repository Blackboard Factory
to translate PCM objects to the a�ected Measurable SEFF Elements. The prepared
Blackboard is then passed to Beagle Core’s Analysis Controller, which will perform the
actual analysis.

In the meantime, GUI Controller opens a dialog providing the user with information
about the analysis and options to pause, continue or abort the analysis. GUI Controller
bequeaths these calls the corresponding methods of Beagle Controller, which handles
the Beagle Core. Once the Analysis Controller has �nished the analysis, the Beagle
Controller uses a PCM Writer to write the results back to the PCM �les.

23

5 Requirements Specification

Beagle’s software design directly follows the Software Requirements Speci�cation
(SRS) [Berger et al., 2015]. Most design decisions are proposed to ful�l mandatory
requirements while allowing to easily add optional requirements. Section 5.1 describes
changes to the Software Requirements Speci�cation (SRS) that proved necessary while
designing Beagle. Section ?? describes how Beagle’s requirements are re�ected in its
design. However, some mandatory criteria have changed concerning the Common
Trace API (CTA) .

5.1 Changes to the So�ware Requirements Specification

The Common Trace API

The CTA was planned to be used by Beagle to communicate with measurement software
(/B10/, /F40/). While starting to investigate the API, it became apparent that it does not
o�er the expected functionality. The CTA is designed to return measurement results
on method level, whereas Beagle’s measurements need to be performed on sub-method
(statement) level. Furthermore, there is no possibility to instrument source code or to
control measurement software. The CTA can only return measurement results. Beagle’s
Measurement Tools will now be directly connected to speci�c measurement software
like Kieker without the CTA as intermediary.

Accordingly, the following modi�cations where made to the SRS:

/B10/ Results are not transferred through the CTA.

/F40/ Has been removed without substitution.

/T30/ Has been removed without substitution.

/T210/ The CTA will not be tested.

Measurement Timeout

The measurement timeout functionality described in /F50/ and /F60/ is a valuable
function to Beagle. However, it is not required to successfully use Beagle for the
purpose described in Chapter 1 of the SRS. Denoting it as mandatory was a mistake.

25

5 Requirements Speci�cation

Hence, the following modi�cations where made to the SRS:

/F50/ was moved to /OF70/

/F60/ was moved to /OF80/

Layout

Further minor changes have been made to the SRS, �xing broken links and layout
issues.

26

Terms and Definitions

Common Trace API

an API developed by NovaTec GmbH for measuring the time, speci�c code
sections need to be executed.

internal action

sequence of commands a component executes without leaving its scope (e.g.
without calling other components). Part of a component’s SEFF.

Kieker

“a Java-based application performance monitoring and dynamic soft-
ware analysis framework.” [van Hoorn et al., 2012]

A measurement software Beagle aims to support.

Palladio Component Model

a domain-speci�c modelling language (DSL) used by Palladio.

It is designed to enable early performance predictions for software
architectures and is aligned with a component-based software devel-
opment process. [Kounev, 2009]

resource demand

how much of a certain resource—like Central Processing Unit (CPU), Network
or hard disk drive—a component needs to o�er a certain functionality. In the
PCM, resource demands are part of the SEFF. They are ideally speci�ed platform
independently, e.g. by specifying required CPU cycles, megabytes to be read, etc.
If such information is not available, resource demands can be expressed platform
dependent, e.g. in nanoseconds. In this case, a certain degree of portability can
still be achieved if information about the used platforms’ speed relative to each
other is available.

27

Terms and De�nitions

SEFF condition

conditions (like Java’s if, if-else and switch-case statements) which a�ect the
calls a component makes to other components. Such conditions are—contrary
to conditions that stay within an internal action—modelled in the component’s
SEFF.

SEFF loop

loops (like Java’s for, while and do-while statement) which a�ect the calls a
component makes to other components. Such loops are—contrary to loops that
stay within an internal action—modelled in the component’s SEFF.

service e�ect specification

description of a component’s behaviour in the PCM. SEFFs contain information
about the component’s calls to other components as well as its resource demands.
This information is used to derive the component’s performance for simulation
and prediction.

28

Bibliography

[Berger et al., 2015] Berger, A., Gleitze, J., Langrehr, R., Michelbach, C., Spiegler, A.,
and Vogt, M. (2015). Beagle—software requirements speci�cation. Technical report,
Karlsruhe Intitute of Technology Department of Informatics Institute for Program
Structures and Data Organization (IPD).

[Berger et al., 2016] Berger, A., Gleitze, J., Langrehr, R., Michelbach, C., Spiegler, A., and
Vogt, M. (2016). Beagle—javadoc. Technical report, Karlsruhe Intitute of Technology
Department of Informatics Institute for Program Structures and Data Organization
(IPD).

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. (1996). Pattern Oriented Software Architecture - A System of Patterns. Wiley.

[Kounev, 2009] Kounev, S. (2009). Automated extraction of palladio component models
from running enterprise Java applications. PhD thesis, University of Wuerzburg.

[Krogmann, 2011] Krogmann, K. (2011). Reconstruction of Software Component Ar-
chitectures and Behaviour Models using Static and Dynamic Analysis. PhD thesis,
Karlsruhe Institute of Technology.

[van Hoorn et al., 2012] van Hoorn, A., Waller, J., and Hasselbring, W. (2012). Kieker: A
framework for application performance monitoring and dynamic software analysis.
In Proceedings of the 3rd joint ACM/SPEC International Conference on Performance
Engineering (ICPE 2012), pages 247–248. ACM.

29

	Contents
	List of Figures
	Abbreviations
	Architectural Overview
	Extension Points

	Beagle’s Knowledge: The Blackboard
	Measurable SEFF Elements
	Evaluable Expressions

	The Analysis
	Measurement
	Analysers
	Final Judge

	Graphical User Interface
	Design
	Control Flow

	Requirements Specification
	Changes to the SRS

	Terms and Definitions
	Bibliography

